Enter your EMAIL address to get daily updates directly to your mail:

Do not forget to confirm the subscription by clicking the link sent in confirmation mail.


Sunday, 4 December 2016

// // Leave a Comment

ISRO syllabus for electronics and communication(ECE)

ISRO Scientist-B recruitment exam syllabus 2013:
The syllabus is similar to ECE GATE syllabus,we should prefer GATE and IES electronics syllabus for any competitive exams, In isro written exam some questions will asked from computer engineering which is not in Gate syllabus,here I am giving basic syllabus based on previous papers,You can also see the previous isro papers here.
(1) Electronic Devices and ICs:      
Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in
silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET,LED, p-I-n and avalanche photo diode,integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.
(2) Signals and Systems:
Classification of signals and systems; System modeling in terms of differential and difference equations; Fourier series; Fourier transforms and their application to system analysis; Laplace transforms and their application to system analysis; Convolution and superposition integrals and their applications; Z-transforms and their applications to the analysis and characterization of discrete time systems; Random signals and probability; Correlation functions; Spectral density; Response of linear system to random inputs.
(3) Network Theory:
Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports.
(4) Electromagnetic Theory:
Analysis of electrostatic and magneto-static fields; Laplace's and Poisson's equations; Boundary value problems and their solutions; Maxwell's equations; application to wave propagation in bounded and unbounded media; Transmission lines: basic theory, standing waves, matching applications, Elements of antenna theory and microwave basics.
(5) Analog Electronic Circuits:
Transistor biasing and stabilization. Small signal analysis. Power amplifiers. Frequency. response. Wide banding techniques. Feedback amplifiers. Tuned amplifiers. Oscillators, Rectifiers and power supplies. Op Amp, 555 timer, PLL, other applications. Pulse shaping circuits and waveform generators.
(6) Digital Electronic Circuits:
Boolean algebra, simplification of Boolean function Karnaugh map and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic circuits; Half adder, Full adder; Digital comparator; Multiplexer De-multiplexer; ROM and their applications. Flip-flops. R-S, J-K, D and T flip-tops; Different types of counters and registers. Waveform generators. A/D and D/A converters.
(7) Control Systems:
Transient and steady state response of control systems; Effect of feedback on stability and sensitivity; Root locus techniques; Frequency response analysis. Concepts of gain and phase margins; Constant-M and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems; Compensators; Industrial controllers.
(8) Communication Systems:
Random signals and noise: probability, random variables, probability density
function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM. 
(9) Computer Engineering:
Number Systems. Data representation; Programming; Elements of a high level programming language PASCAL/C; Use of basic data structures; Fundamentals of computer architecture; Processor design; Control unit design; Memory organization, I/o System Organization. Microprocessors: Architecture and instruction set of Microprocessor's 8085 and 8086, Assembly language Programming. Microprocessor Based system design: typical examples. Personal computers and their typical uses.


Post a Comment