Latest ISRO syllabus for ECE 2020 - electronics and communication-ECE

1 comment
ISRO Scientist-B recruitment exam syllabus 2020:

In this post, I am going to discuss the latest ISRO EC syllabus, which is useful for your preparation of upcoming ISRO scientist-B exam.

The syllabus is similar to ECE GATE syllabus,we should prefer GATE and IES electronics syllabus for any competitive exams, In ISRO written exam, some questions will be asked from computer engineering which is not in Gate syllabus, here I am giving basic syllabus based on previous papers,You can also see the previous isro papers here.

(1) Electronic Devices and ICs:      
Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in
silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photodiode, integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.
   
Straightforward problems are only asked, which can be solved with basic concepts in diode, BJT, JFET and MOSFET(less important). Expect theory questions also from other topics. 

(2) Signals and Systems:
Classification of signals and systems; System modeling in terms of differential and difference equations; Fourier series; Fourier transforms and their application to system analysis; Laplace transforms and their application to system analysis; Convolution and superposition integrals and their applications; Z-transforms and their applications to the analysis and characterization of discrete time systems; Random signals and probability; Correlation functions; Spectral density; Response of linear system to random inputs.
(3) Network Theory:
Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports.
(4) Electromagnetic Theory:
Analysis of electrostatic and magneto-static fields; Laplace's and Poisson's equations; Boundary value problems and their solutions; Maxwell's equations; application to wave propagation in bounded and unbounded media; Transmission lines: basic theory, standing waves, matching applications, Elements of antenna theory and microwave basics.

Expect majority questions from this topic. Study this topic really well, as many theory questions and problems are asked from this. Many questions from microwave is asked which is out of syllabus for gate. Study satellite communication link design and antenna theory also. Questions from topics which we don’t usually find important for GATE can come.

(5) Analog Electronic Circuits:
Transistor biasing and stabilization. Small signal analysis. Power amplifiers. Frequency. response. Wide banding techniques. Feedback amplifiers. Tuned amplifiers. Oscillators, Rectifiers and power supplies. Op Amp, 555 timer, PLL, other applications. Pulse shaping circuits and waveform generators.

Mainly circuits with BJT and OPAMPS only asked. Also learn Rectifiers with zener diode
 
(6) Digital Electronic Circuits:
Boolean algebra, simplification of Boolean function Karnaugh map and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic circuits; Half adder, Full adder; Digital comparator; Multiplexer De-multiplexer; ROM and their applications. Flip-flops. R-S, J-K, D and T flip-tops; Different types of counters and registers. Waveform generators. A/D and D/A converters.

Lot of very straight forward questions asked. So brush up everything and study A/D converters which is not that important for gate.
(7) Control Systems:
Transient and steady state response of control systems; Effect of feedback on stability and sensitivity; Root locus techniques; Frequency response analysis. Concepts of gain and phase margins; Constant-M and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems; Compensators; Industrial controllers.

Very few questions are asked, that too straight forward negative feedback question, system response etc. and related to concepts in root locus and other graphical methods
(8) Communication Systems:
Random signals and noise: probability, random variables, probability density
function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.

Compared to gate syllabus, this is having lot of advanced topics. Study each and every heading in this. Anything can be asked (mostly direct but expect little tricky questions here). Even questions from coding theory have been asked even though not in GATE syllabus.
 
(9) Computer Engineering:
Number Systems. Data representation; Programming; Elements of a high level programming language PASCAL/C; Use of basic data structures; Fundamentals of computer architecture; Processor design; Control unit design; Memory organization, I/o System Organization. Microprocessors: Architecture and instruction set of Microprocessor's 8085 and 8086, Assembly language Programming. Microprocessor Based system design: typical examples. Personal computers and their typical uses.

This topic you will find difficult to study, as it is not for GATE and from previous year paper it is not easy for pin pointing even the correct syllabus. Many topics electronics students are not studying(mostly computer science people only knows the answers so get their help in finding answers in the previous year papers). Better don’t waste too much time in this. Study only basic concepts in computer networks, computer organization and microprocessor (study if you have done it as part of university syllabus and leave the more advanced topics in this and devote more time on to gate syllabus part)


1 comment :